Verified.Me Data Asset Client(DAC) & DC Integration
High Level Design

Version: 0.5
Date: 2021/09/24

Created by Russ Profant
Digital & Contact Center Technology (DCCT)

Revision history

Version
0.1
0.2
0.3
0.4
0.5

Revision Date
Sep 24, 2021
Dec 22, 2021
Mar 22, 2022
Apr 25, 2022
May 9, 2022

Summary of Changes
Initial Draft

Added diagrams

Added Batch Estimate

Added DC integration diagram
Updated initialization flow

Updated By
Russ Profant
Russ Profant
Russ Profant
Russ Profant
Russ Profant

Russ Profant

Project Overview and Scope

This document describes high-level design (HLD) for the
implementation of a third-party (SecureKey) data service called
Verified.Me or V.Me

V.me will be used as an additional data provider to confirm the
identity of new customers for on-line banking for AML
(AntiMoneyLaundering) purposes.

Three systems are in scope for this project: Compass, eBanking,
ECIF

The scope in eBanking covers these current applications CCFA,
DFA. Others may be added later.

Additionally, eBanking will create a service that will act as an
internal proxy for other internal CIBC clients interested in
consuming the V.Me service.

Contributors:

Resource

Russ Profant

Role

eBanking App Consultant

O When new clients apply for a credit card or a deposit
account

State me nt Of they must undergo AML check as mandated by the federal government and if they
don’t pass their application cannot be fulfilled on-line but they must come to a

branch

B u SI n ess V.me is much easier to use for a new client than DIV because it requires the client
only to login to their current FlI (with browsers typically prefilling the login info)

Pro b I e m and confirm the login through a one-time code verification.
The current AML options in eBanking

DIV Face-to-face single 2 (pictdocument) full
TransUnion AML Non-face-to-face dual 2 credit sources full
TransUnion AML Non-face-to-face dual 1 credit source partial

O There are other LOBs in the firm that may want to utilize this
service for their own needs with minimum time and effort as
an internal REST service.

[Offer an easier and faster alternative to new clients for AML
verification to the current DIV

PrO Osed This will be an additional method to compliment the AML methods listed previously
p and will also act as an alternative to the DIV method. DIV method of client

identification is somewhat tedious, and clients sometimes abandon it in the middle of

BUSi nESS the process.
Solution

DIV Face-to-face single 2 (pic, document) full
TransUnion AML Non-face-to-face dual 2 credit sources full
TransUnion AML Non-face-to-face dual 1 credit source partial
VME Non-face-to-face dual 1 banking source partial
TU AML + VME Non-face-to-face dual 2 banking sources full

U eBanking will offer simplified REST API to Verified.Me to
internal clients as a shared service

Logical & Technical Solution Overview

Pl Data Provide an entry point for V.me login in DFA & CCFA and collect the data from V.Me

AML Match the data to the user data and send it to Compass for AML use

Shared Service BEENERAY XTI H I A RN GE NS SE LG

VME Proxy for Create REST API wrapper service for internal LOBs to access Verified.Me ‘Account Profile
Verified.Me Service’

Cart Integration
of VME

Integrate the wrapper service into DC flows based on business requirements

Project Assumptions and Dependencies

1 Verified.Me is available in the public cloud as an API service

2 The whole transaction between the client and V.Me service is carried out in a modified OpenlID Connect authentication and authorization flow

3 Compass directs the AML processing and decides which methods to offer to clients to identify themselves via eBanking

4 ECIF will create a new verification method that will combine TU AML single source with VME single source into “dual source” AML ID
verification

5 EBM-TSS will be used initially as the security mechanism for the internal VME shared service

1 eBanking Ul web and mobile apps

2 Content team for screens and messages

3 Verified.Me service by SecureKey

4 FI (Financial Institutions) file in EFT Hub

5 Key pair availability from TEM and AO teams

Pl Data & Proxy Service - Impacted eBanking Components

EBM-VME Module 6 sprints DEV
* Create a new module for this service called “ebm-vme” 3 sprints DEV QA (setup/support)
» Transfer the service security from DIV module which uses EBM-TSS — API key 6 sprints App Consult
validation
API

* Create new API for the module - follow closely the ebm-div APl model but
without DIV data models

Workflow

* Create API handlers that will perform all the work
* Create matching functionality for user data vs V.Me data

DC Ul * Update AML catalog pages in all in-scope applications with V.Me service option

Resources * Update messages and content as necessary for this project

EBM-TSS * Register VME module as well as eBanking as a client of VME module 0.5 sprint

AML - Impacted eBanking Components

Compass API 2 sprints DEV
» Create new Compass API service to send V.Me data to Compass 1 sprints DEV QA
2 sprints AC

* Update APIs to include “V.Me” option 3 sprints DEV per app (CCFA, DFA)
* Create the service in the module to offer this functionality to all in-scope applications 1 sprint DEV QA per app
* Update all in-scope applications to perform the V.Me data collection if chosen by the

user

Batch 2 sprints DEV
1 sprint DEV QA

* Process FF file from EFT and load it to Gemfire

E2E Verified.Me Process Diagram

(Q _ Authorization Request

Data Access Client(DAC)
OpenlD Connect client

Verified.Me
OIDC End Point

Token Request

A A
v Vv

User Data

DAC API Service

|

g,

Verified.Me Appllcatlon

"\o 'O
] s (7 39

DLBP Data Access Provider(DAP)

| x|

Verified.Me
Landing Page

DLBP Adaptor

Hyper Ledger Fabric

10

Verified.Me Screen Flow (mobile version)

0 Select Financial Institution a Select App (mobile only)

"-E' B seven dppicenias Already using the Verified.Ms mobile app?
@ Verified. Me Cancel I Open the Verified.Ms Mobile App | MyBANK
" oifCie ! !
Sign in with your current financial 0O
institution oo tnl e LD

MyBank —— B — formation sab —

@ ® @ b
e wall Bk Fad parrniiien Babas TRaing v

Dhesjarding REBC Royal Scotiobank
Bk Tall e et okt Varifed Ma

@ [Verified Me

TD

Crormriea=d ther app fon tha Pl sapeivarecs

Verified.Me Screen Flow cont. (mobile version)

° User Data Retrieval

@ e Secure Application

@ Verified.Me Cancel

Getting things ready

—)

@ "] Secure Application

 Verified.Me

e User Data Authorization

Cancel

Please review and verify the
following requested by Harness:

9 @ Ready E]

MyBank - Identity Profile

Includes personal identity information

| authorize the requested information to be shared with
Harness for identity verification and account creation

purposes.

& Verified.Mé

About Support Contact Legal
English -

Downlead the app feor the full experience

£ Do oad on the GETITON
& App Store . Google Play

G End

@ B Secure Application

@ Verified.Mé

Thank You

Redirecting you back to Harness .

) Verified.Mé

About Support Contact Legal
English ~

Download the app for the full experience

£ Download on the GETITON
@& App Store b\ Google Play

12

EBM-VME Design Outline - Approach

DIV code re-use

Both services work based on OIDC authorization code grant
EBM-VME will reuse EBM-DIV design including all the code but in a new module
Changes will be made only where it is necessary

Main technical differences between DIV and VME

The fundamental difference is the control of the flow:
1. In DIV there is an eBanking DIV landing page. As a result of this the code in the page can control the DIV flow between
client eBanking DIV and SecureKey DIV; this is Ul-controlled flow.
2. In VME there is no page, therefore the flow must be controlled by eBanking VME module; this is BackEnd-controlled
flow.
Same vendor but different end points (APIs) — configuration change
Different vendor license and security details — configuration change
Different data packages
No need to create a job in Verified.Me as is the case in DIV
The main functional difference is that there is no processing done by the vendor and so data is immediately available as soon
as the user ends their vendor flow. This means there is no polling required in DC to get the vendor output — different data
retrieval implementation

The VME E2E service will have 4 steps

1.
2.

3.
4.

Client system makes a request to EBM-VME to use the service. This must be done from the back end.

Client’s browser is redirected to the Verified.Me service. The client performs authorization and the actual login to another Fl
which makes the data available to the vendor. Vendor redirects client browser back to eBanking.

EBM-VME requests the data from the vendor and redirects the client browser back to its application.

Client system requests the data from EBM-VME.

13

EBM-VME REST API - Create Request in eBanking VME

i: /v1/json/vme/workflow

POST API endpoint to create new workflow for VME process. This is a public API, to be called by calling applications.

Response Data Model

Request Data Model
{"applicantIinfo": { {
"firstName": "Michael", "redirectUr!”:https://sk.vme/authorization request end p
"lastName": "McGee", oint,
"middleName": "George", “worklowld”:”12345”
}

"dateOfBirth": "string",

"address": {
"streetAddress": "20 Dundas St. West",

"locality": "Toronto",
"region": "ON",
"postalCode": "L5M 672",
"country": "CA”

b
"phoneNumber": "+14556789000",

"email": "michael@gmail.com"
5
"locale": "en-CA, fr-CA",

"callingAppParameter": {
“callingAppReturnUrl”:”https://dc/vme/callback”

“dataMatch”:
}
14

http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/startDivFlow
http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/createDivFlow
https://sk.vme/authorization_request_end_point

EBM-VME REST API — Get Request Status From eBanking VME

€3 /vl/json/vme/workflows/{workflowld}/status

GET API endpoint to get workflow status for VME process. This is public API, that can be called by calling applications. This is a
client helper or convenience API as it will not be used during the flow.

Request Data Model Response Data Model
{"workflowld":”123-456-789 {“workflow”: {
} "workflowld":”123-456-789”,

“status”:”SUCCESS,FAILURE,CANCEL,IN_PROGRESS”,
“matchStatus”:”PASS,FAIL”,

"startDate:””,

“endDate”:"””

“durationinSec”:"””

}

15

http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/startDivFlow
http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/createDivFlow
http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/startDivFlow

EBM-VME REST API — Get Request Result From eBanking VME

6 /v1/json/vme/workflows/{workflowld}/result

GET API endpoint to get workflow results: claims and decision. This is public API, to be called by Calling Applications.

Request Data Model = Response Data Model “account”:{
{"workflowld":”123-456-789” | {"vmeData": { “type”:"deposit,credit card,loan”,
} “givenName": "Michael", “number”:”1234567890”,
"familyName": "McGee", :ins'Fitu’:ci’(’)n”:""Ol”,
"middleName": "George", active™:"yes”,
”title": "prefix-to-name”, 1
”honorific”:"suffix-to-name”, “matchResult”:{
"dateOfBirth": ””, "status”:”PASS,FAIL”,
"address": { “firstName”:”PASS, FAIL”,
"streetAddress": "20 Yonge St.", "lastName™:”PASS, FAIL?,
"locality": "Toronto", “dateOfBirth”:”PASS,FAIL”,
"region": "ON", "active”:”PASS, FAIL”

"postalCode": "L5M 672",

"country": "CA” “workflow”:{

1 "workflowld":”123-456-789”,

”phoneNumber": "+14556789000”, “status”:”SUCCESS,FAILURE,CANCEL,IN_PROGRESS”,
“email": "michael@gmail.com”, “matchStatus”:”PASS, FAIL”,

”customerRefNum”:””, “startDate:"”,

”verificationDate”:”” “endDate”:"”

L “durationinSec”:””

1

16

http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/startDivFlow
http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/createDivFlow
http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/startDivFlow

EBM-VME REST API - Allow Vendor To Send Auth Code to eBanking

6 /v1/json/vme/vendorCallback
GET API endpoint to allow the vendor to return the auth code to eBanking. This is public API to be called by the V.Me vendor.

Request Data Model

On Success

{

",

"code":”authorizationCode”,

n.n

“state”:”workflowld”

On Failure
“error”:"access_denied”
“error_description”:””

Vendor uses standard OpenlD defined error codes and error handling. In addition it has its own error code defined above for cases not covered by
OpenlD error handling

17

EBM-VME REST API — Allow Vendor To Get The Public Signing Key

9 /v1/json/vme/.well-known/jwks.json

GET API endpoint to allow the vendor to get the public key to verify the signature of the request.

The API will return the public key for signature. The key will be in the keystore file so that the key can be easily rotated.

File format:

{"keys": [{
"alg": "RS256",
"kty": "RSA",
"use": "sig",

"x5c¢": [“public_key"],
"kid": "NjVBRjY5MDICMUIwNzU4RTA2QzZFMDQ4QzQ2MDAyQjVDNjk1RTM2Qg"
H}

For field descriptions see https://auth0.com/docs/secure/tokens/ison-web-tokens/json-web-key-set-properties

18

https://auth0.com/docs/secure/tokens/json-web-tokens/json-web-key-set-properties

EBM-VME Verified.Me Integration - Authorization Request

Authorization request redirect link format

In order to authenticate the DAC, a signed request object is used. The authorization request is encoded as a compact serialized JWS
object signed with the DAC's signing key. The payload of the JWS contains a JSON object with the fields being the OpenlID Connect
parameters below.

Request object structure

redirect_uri - The URL that the authorization endpoint should redirect the response back to. This URL must be registered with Verified.Me

v

v
v

ANENEN

to prevent returning authorization responses to unknown clients.

client_id (required) : A client_id string provided to the DAC during provisioning.

scope (required) : A space delimited list of scope values that identify the data that the DAC wants. The scope must include the OpenlD
scope as required by OpenlD Connect as well as one or more of the Verified.Me defined scope values, such as Account Profile.
response_type (required) : This must be set to the string value code.

state (required) : Use workflowld

ui_locales - A space delimited list of locale strings as described in RFC 5646. If provided, this will be used to select the language in the
Verified.Me OIDC service.

The full set of parameters in the link to be passed to the Verified.Me OpenID Connect authorization endpoint

v request (required) : the JWS request object described above.

v' response_type (required) : This must be set to the string value “code”.

v' client_id (required) : A client_id string provided to the DAC during provisioning.

v scope (required) : A space delimited list of scope values that identify the data that the DAC wants. The scope must include the OpenID

scope as required by OpenlD Connect as well as one or more of the Verified.Me defined scope values, such as Account Profile.

Response

v code (required) : the authorization code to use in the token exchange for an access token.

v’ state (required) : the state provided in the authorization request.

19

EBM-VME Verified.Me Integration - Access Token Request

Access Token Request Format
The DAC is then able to exchange the authorization code for an access token by calling the Verified.Me OpenID Connect Endpoint. The
DAC will authenticate using the private_key jwt method to enable the Verified.Me OpenID Connect Token Endpoint to validate that it is

the DAC making the call by verifying the signed token.

The token request is made by POSTing and the following parameters:

grant_type (required) : The value MUST be set to "authorization_code".

code (required) : The authorization code returned in the authorization grant response (above).

client_assertion_type (required) : Must be set to the string urn:ietf:params:oauth:client-assertion-type:jwt-bearer

client_assertion (required) : - A JWS encoded with compact serialization that is signed with the DAC's signing key. The payload of the
token is a JSON object with the following claims:

ANENENEN

» iss (required) : The client_id of the DAC

» sub (required) : The client_id of the DAC

» aud (required) : The URL of the Verified.Me OpenID Connect Token Endpoint

» exp (required) : The expiry time of the token. This time should be set to a small value (e.g. 5 minutes) into the future as the token
will only be used to retrieve the access token.

» jti(required) : A unique identifier for the JWT.

» client_id (required) : The same client_id used in the authorization grant request.

> redirect_uri (required) :The same redirect_uri used in the authorization grant request.

Response

access_token (required) : the access token to be used in subsequent API calls for this session.

token_type (required) : MUST be set to "bearer".

expires_in (required) : number of seconds until this token expires. This will at minimum be set to the job.expiry _time.

id_token (required) : a JWS as described in https://openid.net/specs/openid-connect-core-1 _0.html#IDToken. The sub field will be a
unique identifier for the user at the calling DAC. That is, different DACs will get a different value for the same user.

DN

20

https://openid.net/specs/openid-connect-core-1_0.html#IDToken

EBM-VME Verified.Me Integration - User Data Request

User Data Request
The DAC can now access the collected user data by sending a GET or POST request to the userinfo endpoint in accordance with OpenlID Connect
Core Section 5.3. The access token must be provided in the Authorization header as a bearer token.

Response - Personal Data
The data CIBC is consuming is called “Account Profile”. It has basic personal client data listed below

given_name
family_name
middle_name
title

honorific
birthdate

address

phone_number

email

customer_ref_num

verification_date

End-user's first name

End-user's "last name," including prefixes

End-users "middle names." Includes all middle names, if more than one. Initials are acceptable.
End-user's name prefix title (i.e., Mr., Mrs., Dr., Sgt)

The suffix to the Client's name

End user's date of birth (YYYY-MM-DD)

The end-user's primary postal address. This is an object with these fields: 1) streetAddress 2) locality 3)
region 4) postalCode 5) country

Person's primary number, mobile if available, in order of preference:
1) primary number if also marked mobile 2) most recent number marked mobile 3) home number if marked
mobile 4) primary number landline or unknown 5) home number landline or unknown 6) user selection

Person's email address. In order of preference: 1) primary 2) user selection
A unique reference number that links back to the user's original CIF

The date at which the Fl server is attesting to the accuracy of this data

21

EBM-VME Verified.Me Integration - User Data Request cont.

Response - Account Data

In addition, “Account Profile” offers basic account verification data

Account

type

number

institution

active

An open financial account belonging to the user. The older account is preferred. Order of preference
is:

* Deposit Account

* Credit Card account

* Loan Account

the type of account (i.e. deposit, loan, credit card)

the full transit plus account numbers of the selected account. There is a proposal to also pass the
transit number if the account field of this bundle. The first five numbers are the transit number,
followed by the account number (i.e. "9345334011111222233334444" Where the 93453 is the
Transit number and the 34011111222233334444 is the account number.)

The institution number associated to the Fl (i.e. 01)

The status of the account. "True" means the account is active, "False" means it is not, but detailed
account status (i.e. reason) is not provided

22

Client Service
Request
Initialization
Using eBanking
VME Service

EEM-DC/

1.0 VME({optional client_data)

Client Back-end EBM-TSS

EBM-ANP

Y

Client back-end calls EEM-VME to register the request
and get auth request URL which redirects the client
browser to the V.Me external flow

1.1 Validate Input{) |

1.2 Get APl key) _

POST ,n‘vl;’jsonjv:me,n'workflow{::a.pi_key,x_auth_token,

EEM-VYME
microservice

.

user_d ata,calling:_app_param s}

¥

X |Validate input and save datall\]

1.5

alt

[x_auth_token is empty]

' _ 1.6 Create anonymous session()

u 1.7 :x_auth_token

..).
eBanking creates an authorization
request indicating the data scope 1.8
of the request. The client is then .
redirected to the V.me OIDC -(:l
authorization endpoint.
1.9 :authorization_request |
(............................... e [s L
1.10 Redirect to Authorization_request end point | | |
... L ! ! !
! ! ! !
EBM-DC/ EBM-TSS EEM-ANP EBM-VME
Client Back-end microservice

23

User
Authorization
& Fl Login
Through
Verified.Me

V.Me OpenlD

Browser Connect Service Verified

1.0 Request authorization

.Me Sever

¢ 12 Redirect to Verified.Me landingpage

1.3 Verified.Me reguest

1.1 Register request

OIDC registers the request in the ledger b]

Y

i | Verfied.Me will show a page
' | instructing the user to complete

| 14 show V.Me (SecureKey) landing page

; the Browser and V.Me is not shown

1.5 Issue license | The process of issuing the license between IT

1.6 licenselssued(license,state)

the request on their device

Y

1.9 Redirect back to eBanking redirection URl{auth_code)

to the OIDC server

When the user completes the request
the page will post the license and state

1.7 verifyState(state)

e |

OIDC will verify state to make sure
the request matches the response

1.8 generateAuthCode

e |

OIDC will store the license and
issue an auth code for eBanking

Browser V.Me OpenlD Verified

Connect Service

.Me Sever

24

eBanking Data
Retrieval From
Verified.Me

Client

_ 1.12 callback url

Browser

EBM-VME
microservice

' 1.0 auth response(auth_code) !

V.Me OpeniD
Connect Service

Verified.Me Sever

[

| Redirect to client app with workflow status Iﬁ

]
Browser

EBM-VME
microservice

V.Me OpeniD
Connect Service

T
L [auth_code exists] :
i eBanking calls OIDC to exchange
1.1 token request(auth_code}"_ LIy ey oyt
1.2 authenticate request |
\ | OIDC send the license to
1.3 retrieve data for license_ ' | Verified.Me service
11| and retrieves the data
1.4 ted dat
L. -] requestedda
?eesne;;eetoken The response includes the
P ID token and the access token
i
. 1.6 token response(token) :
1.7 juserData ! | OIDC service will return.
> | requested data to eBanking
1.8 ted dat !
L. 2] Ul oAt L] |
1.9 process data i i
[failure] | |
update workflow status | |
1.10 . | i
with returned error X X
i i
1.11 :client redirect ! !

Verified.Me Sever

25

EBM-DC/ EBEM-VME

Client Back-end Client Front-end microservice
1 1 1
alt | [Client Back-end retrievps data] !
| 1.0 Get ,n'vl;'j5on,n'vn"le;‘wnrkflows.,l'{workflnwld};'res.ultl{api key,workflowld) | Client back-end
: == »— | retrieves the user data

1.1 Validate api_key

il

1.2 Validate workflow

i

Client Data
Retrieval From

eBanking VME ===
service

1.4 Get /vl/json/vme/workflows /{workflowld}/result i

Client front-end Ij

1.5 Validate api_key

1.6 Validate workflow

il

1.7 userData

_I.{ .. .
EEM-DC/ Client Front-end EEM-VME
Client Back-end microservice

26

Digital Cart &
VME Service

Integration

User
i

1.0 AML Catalog Next()

‘ EBM-DIV ’ ‘ EBM-VME ’

T T
| | When the client goes though DIV X
1.1 AML Catalog Next() ! DIV data needs to be processed. Processing !
»— | starts synchronously but changes to |
asynchronous while waiting for DIV results |
1 T]
alt [D1v] | i |
1.2 Validate Input X | |
1.3 Get Consent()_ | | |
PR U : !
1.5 Capture DC(DIVConsent) [[
alt |
(
i
(
i
(
i
|
. I i
alt /J [VME] | X X
1.8 X o |
! ref
! Full VME flow:
| 1) Client init 2) SK flow 3) Data retrieval
If the client selected VME option ' ! !
VME processing starts synchronously i i i
and can be followed by AML catalog 1.9 Get Data(worklow_id) - !
with DIV and Branch options if ECIF \ - |
validation fails | X
1.10 :VME data__| i
e b bR R N — | !
1.11 Capture DC(VME Consent) | o
1.12 ! ! H
(I [T s -
1.13 Manage VME(data) X -
| L14AMLcatalog! |]]
alt / [DIVEligible == true] \ X X
| L:15 Display AML Catalog(DIV/Branch) _ i i i

1.16 AML Catalog(DIV/Branch)

1.18 eSignature/Wait Fulfillment

1.17 Display eSignature/Wait Fulfillment

Screen Flows with V.Me

CCFA

Existing Customer?

Rates &

Upsell
Fees

Downsell

AML

Catalogue ’

Wait . .
Fulfillment

Legend

- Ul pages

- External Flow
’ Logical Decision
DFA

(] New Screen/Service
Existing Customer?

Product
App Info Offer

AML Wait

Catalog eSignature Fulfill

Confirmati
on

Password

28

EBM-VME Verified.Me as part of E2E AML Processing

Perform Verified.Me

Match User data to V.Me

Send data and match

Send V. data to ECIF

1 While AML catalog has DIV

1 or V.Me
1

\ 4

Complete ECIF AML

Digital Card Compass CA ECIF API
! T T
! | |
1 | Account Opening Flow 1 1
Account Application submission 1 1
1 |
AML call N |
d |
(= = = = — e o 1
NF2F Failure : L
. 1
If partial TU match, then |dent|ty Request I Return TU AML Result: B Get TU AML Data
Compass sends AML it | True = |
Catalogue with: I |« False Ana yze TU AML l?ata
1. DIV : Partial (institution ID) Save single tradeline
2. V.Me (institution ID) ¢ = = — — — e em o - —-- T, e L
3. Branch | I
/ Set AML catalog I 1
< I I
| |
I I \
Create list of Fls : : Loop
1
1
1
1
1
1
1
1
1
1

results to Compass

Return AML status

Set AML catalog

data setup

A

Il Current functionality

B New functionality

1.

o v »

10.

11.

12.

13.

Compliance Authority is called
to perform AML validation

If there is AML compliance, the
case proceeds to post
compliance processing

If compliance fails due to ID
validation, the Identity
Validation service is called
Compass calls ECIF Identity API
Identity API calls TU

TU performs matching logic
and provides a response
Identity APl inspects TU
response, updates ECIF and
returns result to Compass
Compass prepares AML catalog
based on ECIF response
eBanking presents AML catalog
eBanking performs V.Me if
selected

If successful eBanking matches
data and sends it to Compass
Compass sends the V.Me data
to ECIF and gets AML status
Compass updates AML catalog
and sends it to eBanking

29

Weekly Batch Job to Process Fl File

EnterpriseFeedHub

Autosys DC
[T
i 1
Run Job
g Get FF file .
Parse Fl File
Load Data Into Gemfire
‘ ________________________
Return Job Status

R EEEEREEr

R ERREEEEE

The Fl file carries the list of all financial
institutions in Canada

It’s posted on the FeedHub once a week
eBanking needs to process the file by
extracting financial institution name,
number and parent number

This data needs to be stored either in
Gemfire as this is the only storage
mechanism available in eBanking or
possibly as a text file for DC module
consumption

The data will be used by DC module
when presenting the AML catalogue to
the client

eBanking will compare the FI number
received from TU AML against the list of
Fl institutions and exclude the matching
institution or parent institution from the
suggested list of V.Me Fls because they
are not eligible if they are the source of
TU AML data

30

