
EBM-DC (eBanking Digital Cart) – Design patterns
Version: 0.1
Date: 2021/08/20

Created by Russ Profant
Digital & Contact Center Technology (DCCT)
Canadian Imperial Bank of Commerce (CIBC)

Revision history

Proprietary and Confidential © CIBC 2018 2

Version Revision Date Summary of Changes Updated By

0.1 Aug 23, 2021 Deleted legacy summary and created new summary Russ Profant

Executive
Summary

• Digital Cart (DC) module implements a simple core business functionality “the
application for a banking product (currently deposit or credit card)”. This is also
called a “flow” in the business domain.

• There are many different variations on this core functionality. The variations are
always represented through slightly different UI screens and screen sequences.

• The current practice in DC is to add new variations of the “flow” to DC module
by creating (mostly) new applications or “flows”.

• The main reason for this approach is that in the current design/ framework the
screen flow is controlled in DC module instead of the UI.

• To accommodate the new screen flow there are two options in DC:

1. Customize existing flow (high risk, rarely used)

2. Create new flow (little risk but extensive code duplication, mostly used)

• This is becoming increasingly difficult to sustain and manage because the code
duplication it rests upon (option #2 above - copying the whole application to a
new code base) forces ever more code duplication (linear code growth) in the
form of:

1. Maintenance - bug fixes must be done in numerous applications(see HTTP
status codes)

2. Enhancements – a single new functionality must be added to numerous
applications (see VCI, e-Statements)

• From the business perspective this trend is manifested through work
duplication resulting in increased delivery times, increased costs, lack of
resources/developers and corresponding scheduling pressures etc.

3

4

Product
Page

Rates &
Fees

Applicant AML eSignature Cops Offer
Cross-

sell
Hard
Stop

System
Error

Compass

VSM

API

Backend
Helper

DFA

VSM

API

Backend
Helper

Smart Start

VSM

API

Backend
Helper

Apply & Buy

VSM

API

Backend
Helper

MTO TOO

VSM

CCFA
API

Backend
Helper

CCFA/Titan5

VSM

API

Backend
Helper

Titan6

VSM

API

Backend
Helper

Another Flow

Titan
API

UI page collection

Single UI page

UI API

Virtual State Machine

The diagram is not meant
to be complete; it doesn’t
contain all the UI pages; it
also doesn’t contain AC
flow and legacy flows such
as OAO and SPCA. The
purpose is to show the
main trend in the current
practice.

Deposit flows

Credit Card flows

The lineage of the flows:
CCFA – mother of all flows; CCFA -> DFA; DFA -> Smart Start;
CCFA -> Apply & Buy; CCFA -> MTO TOO; CCFA -> Titan6

eBanking

Diagram Summary of Current DC Design Practice & State

5

Current DC Design Practice & State Explained

The
Advantages of
the Current
Design

6

C H A R A C T E R I S T I C D E TA I L B E N E F I C I A R Y

Precedent It’s already in production and it works. Therefore, the easiest
way forward is to reuse it.

DC - encourages quick
‘Copy-Paste-Edit’
design and
development

Simplicity The pattern is simple and easy to understand. (API-
>Controller->Façade->ViewState). The same pattern is applied
to all workflows. Anyone new who comes to the team can
grasp it quickly.

DC - encourages quick
‘Copy-Paste-Edit’
design and
development

Simplified UI This is an “inversion of control pattern” that tightly couples
back end (eBanking) to the front end (UI). The eBanking
becomes the orchestrator of the UI flow. Therefore, all the
logic can reside in eBanking where UI is little more than a
dumb screen with some data validation and turn-on-off-field
logic. This makes UI development a lot easier and makes it
easier to test.

DC UI – no need for
expert developers
Business – UI
development and
testing is faster and
cheaper

Form of versioning The current pattern and practice can be viewed as a kind-of
code versioning. The different flows/applications have
different data elements which may not be compatible with
other flows.

DC – no need to
worry about
versioning

The
Disadvantages
of The Current
Design

7

C HARAC T ERIST IC DETAIL NEGAT IVE IMPAC T
O N

Adding new functionality
through code customization
is risky

Customizing existing flow is very risky. These are
production flows and adding new ‘if else’
statements to accommodate different conditions
will easily introduce regression bugs into the code.

DC – Introducing high risk
into development
QA – extensive regression
testing

Adding new functionality
through code reuse creates
code duplication or more
accurately code
multiplication

Reuse as ‘copy and paste’ of the existing code
creating a new code base. With this approach we
are duplicating the existing code base again and
again increasing the maintenance costs and
drastically increasing future enhancement costs.

DC - Maintenance of multiple
code bases

With many flows, new
features need to be added to
multiple apps/flows

When a new feature needs to be added, such as
VCI, it needs to be added to multiple existing
flows. Sometimes this can be done in a single
project, but often multiple projects are required
essentially duplicating all the effort and the cost.

Business – cost are higher
and delivery times are slower
as “the wheel is reinvented”
over and over

With many flows, bug fixes
and code changes need to be
done in multiple flows

When code needs to be changed or fixed, it must
be done in multiple applications

Business – cost are higher
and delivery times are slower

The
Disadvantages
of The Current
Design cont.

8

C HARAC T ERIST IC DETAIL NEGAT IVE IMPAC T
O N

Tight coupling of separate
layers of the system

In software design and architecture terms, the
current design breaks one of the most
fundamental rules. It tightly couples two layers
of software, the front end and the back end. It
more than “tightly couples”, it actually “fuses”
the front end with the back end.

DC - Legacy approach to
software design mixing
layers and responsibilities

Multiple flows with similar
logic and code break DRY
principle

DRY (Don’t Repeat Yourself) is one of the
fundamental software design concepts. It’s
being broken repeatedly.

DC - Breaking Modern Best
Design Practices

When code is copied to a
new application the
existing functionality must
be customized

When existing code is copied to a new base, the
code is not ready and needs to be customized to
fit the new project setup.

Business – cost are higher
and delivery times are
slower

Negative impact on
dependent system
primarily Compass

Compass has only a single client API. It’s very
difficult to manage versioning when a single API
serves numerous clients with slightly different
requirements.

Compass - versioning
becomes difficult to next to
impossible with rising client
count

The benefits mainly accrue in the
beginning. When requests are mostly
for new flows the benefits are obvious
and significant using quick and easy
‘copy and paste’ approach.

The benefits are mostly in DC. Not much
new design or development is
required because 80+% of new work
is just “copy, paste and edit”.

UI benefits as well. Less work and the
work is easier because it doesn’t need
to deal with page flow and application
state since this is handled in DC.

9

The negative professional impact on DC.
By breaking some of the fundamental
rules of software design and
engineering eBanking is not following
industry best practices.

As the flows multiply the costs rise too.
When new requests become mainly
enhancements, the disadvantages
come to the fore in the form of effort
multiplication.

The costs are mostly borne by business.
The negative impact is felt by

business in terms of actual costs and

timelines and by DC in developer

shortages.

Pros & Cons of the Current Design Practice in DC

Conceptual
Misunderstanding
of the Domain

10

The Root Cause

The basic flaw in the current design practice comes from applying
inappropriate design paradigm to the problem. When you have multiple
variations of the same problem by using DDD you end up with multiple
systems which is exactly what happened in DC.

Misunderstanding of the “flow”

The current DC design (Controller-Façade-ViewStates or CFV) is not
based on good conceptual analysis of the problem. The main issue is the
understanding or rather misunderstanding of the workflow or “flow” and
where it belongs.

Non-Ubiquity of the “Flow”

Flow is not a good ubiquitous (DDD) concept because it means different
things to different people in different circumstances in the same business
domain. It’s a proper concept to describe the visual screen flow but nothing
more.

“Flow” misuse is historical in DC

The misunderstanding of the “flow” is long-standing in DC, and it predates
the current CFV design/framework. Initially the “flow” was controlled by
JBPM engine. The real problem was not JBPM but that this business
workflow engine was used as the visual flow orchestrator.

11

• The “application process for a banking product” is a 1-step business process where a customer
supplies some information and the bank either grants the product or not, the information required
changes from product to product but that’s not a process.

• An application for a banking product is akin to a purchase. And in fact, the component is called the
‘Digital Cart’ in eBanking. Typical eCommerce apps have one app for all their product purchases, they
don’t have a separate apps for different product types like eBanking does for deposit (DFA) and credit
card (CCFA) etc.

• The application process as carried out in eBanking in all its various formats such as CCFA/SPCA/DFA
etc. simply breaks the customer data requirements into various screens that create a flow. The flow is
real in the UI but in business terms it’s illusory.

• The reason the data request is broken up into a flow is to make the application process “seem” easier
to the customer. In the past the prevailing UI design was to have many pages each with a small
number of data fields (OAO). Now it’s the opposite, to have all data fields in 1 page(CCFA/DFA). In
other words, the flow has changed completely but the business functionality stayed the same
because the visual flow is not a real workflow.

DC flows as pseudo workflows

High Level Analysis of the Problem Domain

• Some say that DC is a ’backends to frontends’ pattern. This idea is tempting but it has one crucial
problem. The main data flow is the opposite, it’s not from back to front but from front to back (client
sends in data and gets back an answer).

• In the full system tier analysis, eBanking is the middleware. A conduit for communication between
the UI and the real back end which is Compass.

• It can also be viewed as a kind of API gateway (the opposite of ‘backends to frontends’) because its
only purpose is to route the UI API data requests albeit repackaged (for API) to the correct Compass
API.

DC as API gateway & Compass as the true back-end

12

Problem Analysis cont.

❖ The real business workflow resides in Compass as the engine that adjudicates and fulfills
product applications.

❖ To eBanking Compass’s business functionality is essentially a black box but its API does require a
specific “flow” of eBanking calls.

❖ Here is the real eBanking workflow vis-à-vis Compass hiding in the DC visual flows:

1. Create Case in Compass.

2. Create/update/complete Enrollment in Compass.

3. Get Recommendation from Compass.

4. Update/Accept Recommendation in Compass.

5. Perform Product Setup in Compass

6. Get Fulfillment Summary from Compass.

Compass as the business workflow engine & DC as workflow manager for Compass

13

Problem Analysis cont.

14

New Approach To eBanking Design

UI

REST
API

end-
point

Flow
Orches
trator

Compass
Real

back-
end

eBanking

UX Design
Incorporating
Workflow

Take the
“flow” out of
DC and put in

UI

Build visual
components
around data

requirements

Use templates
to combine

visual
components
into screens.

Develop a
non-visual UI
component to

manage the
screen flow.

15

An Example of UX Design Approach

16

Personal Data

Employment
Data

Income Data

Residency data

Personal Data
Employment

Data

Residency data

Visual data components Applicant page

Income Data

Employment page

Visual page template

Flow Manager

eBanking
DC Design
Approach

17

Design Patterns
• Use 2 design patters

REST API
Current API

• Carries state => NON-REST

• Single generic resource (/api/applications)

• End-point collections mapped per flow and UI screen

New REST API

• State is held in UI => REST

• True resource end-points such as ‘product’, applicant’, ‘application’ etc.

• Resource granularity can be adjusted based on data requirements not UI flow

Compass Orchestrator

• Avoid the dilemma of 1 generic or many specific orchestrators (1 per flow)

• Use choreography instead aka “silent orchestration”

eBanking DC Design

18

/api/applications/{id}
/applicant

/api/applications/{id}
/product/credit

/api/applications/{id}
/product/deposit

/api/applications/{id}
/applicant/{id}/div

/api/applications

Applications or flows:
• DFA
• CCFA
• Smart Start
• Apply & Buy
• Titan
• MTO TOO

Applicant Handler

Credit Card Handler

Deposit Handler

DIV Handler

Application handler

Data Event
Queue

Compass Enrollment
Handler

Compass Case
Handler

Compass DIV
Handler

Compass Product
Handler Compass API

Compass Fulfillment
Reader

Gemfire
/api/applications/{id}

/fulfillment

eBanking Digital Cart – Service Layer

This is just a quick outline and is not meant to be complete

Fulfillment
Queue

UI (Application) Layer

Summary of New Design Characteristics

• UI is no longer a collection of web pages but a collection of full-blown applications

• eBanking DC is no longer an application layer but becomes a service layer

• The full design is very generic and can be applied to almost any type of application because the application resides in UI and is not
spread across layers

• The design is consistent with the best modern design practices of reactive architecture:

• Almost full independence of all layers from each other

• Service dependencies are dynamic and handled by messaging

• Each layer deals with only its own concerns and responsibilities

• Each layer consists of independent components whose dependencies are minimal

• Each component can be independently designed, developed, maintained and tuned for security and performance

• Minimal future design constraints

• This design can be extended by exploiting the natural fault line in eBanking by splitting DC into 2 separate services:

• Frontend data handler

• Backend data handler

• Possible further extension of the architecture can be done by moving the ‘Frontend data handler’ to the API gateway when it’s
available since this DC component is essentially a type of API gateway

19

https://www.reactivemanifesto.org/

Extended New DC Architecture

20

Apps
REST API

end-
points

Compass
Orchestra

tor
Compass

Messaging

Frontend Frontend data
service

Backend data
service

Service glue/
connector

Backend

eBanking - Middleware

How to Get There

Proprietary and Confidential © CIBC 2018 21

• CCRI (Consolidated Collection Recovery Initiative) intake would be a good candidate for PC

• It’s an application for a consolidation loan, a new type of product

• There is no existing flow that can just be copied to a new code base, this would need to be builtnot
from scratch but based on DFA or CCFA flow

Proof of Concept

• The main challenge and by far the most complex change would be in the UI

• Current UI will need to be transformed from a collection of dumb screens to a collection of
applications

• The screens are all there, but the flow manager needs to be built for each application

• Also, the data needs to be passed from screen to screen when DC is no longer doing that

User Interface

• Collections of UI APIs need to be converted into one collection of true REST APIs

• The current DC code would need significant rewiring to turn it into UI and Compass API handlers
from the current VSM framework

• The most challenging thing will be the messaging as there is nothing in eBanking currently. With
Azure migration, likely the best option would be to use one of the Azure messaging services.

Digital Card

